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Abstract. This paper concerns how multiple sets of rules can be generated 
using a rough sets-based inductive learning method and how they can be 
combined for text categorization by using Dempster’s rule of combination. We 
first propose a boosting-like technique for generating multiple sets of rules 
based on rough set theory, and then model outcomes inferred from rules as 
pieces of evidence. The various experiments have been carried out on 10 out of 
the 20-newsgroups – a benchmark data collection – individually and in 
combination. Our experimental results support the claim that “k experts may be 
better than any one if their individual judgements are appropriately combined”.  

1   Introduction 

Appropriately combining evidence sources to form a more effective output than any of 
the individual sources has been investigated in many fields. The challenges of 
integrating evidence have gone under pattern recognition [1], sensor fusion [2], and a 
variety of ensemble methods [3]. Ensemble methods first solve a classification or 
regression problem by creating multiple classifiers that each attempts to solve the task 
independently, then use the procedure specified by the particular ensemble method for 
selecting or combining the individual classifiers. The two most popular ensemble 
methods include bagging and boosting [4]. In this research, we investigate an approach 
for combining multiple decisions derived from multiple sets of rules based on 
Demspter’s rule of combination. Each set of rules is generated by a single rough sets-
based inductive learning method, and is referred to as a classifier as in the boosting 
method. The advantage of our approach is its ability to combine multiple sets of rules 
into a highly accurate classification rule by modelling the accumulation of evidence. 

We apply these methods to 10 out of the 20-newsgroups – a benchmark data 
collection – individually and in combination. Our experimental results show that the 
performance of the best combination of the multiple sets of rules on the 10 groups of 
the benchmark data can achieve 80.47% classification accuracy, which is 3.24% 
better than that of the best single set of rules. 
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2   Rough Sets for Generating Text Classifier  

Inductive learning can be loosely defined as learning general rules from specific 
instances [5]. In other words, inductive learning can be seen as a process of synthesizing 
mappings from a sample space consisting of individual instances. The result often is to 
reduce the space containing individual instances, leading to a new smaller space 
containing a set of representative instances, which serves the same role as the original 
one. By contrast, a rough sets-based inductive learning is aimed at learning a covering 
set of attributes in terms of a reduct, which is a minimal sufficient subset of a set of 
condition attributes. It preserves the dependency degree with respect to a set of decision 
attributes that has the same ability to discriminate concepts as a full set of attributes.  

A rough set-based approach to inductive learning consists of a two-step process. 
The first step is to find multiple single covering solutions for all training instances 
held in a decision table. Specifically, given a set of condition attributes A and a subset 
B ⊆ A, a covering attribute set is found directly by computing its dependency degree 
with the decision attribute. The direct solution involves adding an attribute at a time, 
removing the attribute covered by the attribute set, and then the process is repeated 
until the dependency of B is equal to that of A. At the end of the induction of 
conjunctive attributes, more than one covering set – reduct – will be found.  

The second step is to transform rules from multiple sets of reducts and weight 
each rule based on counting the identical attribute values. As a result, a number of 
rule sets will be produced, denoted by ℜ = {R1, R2,…, R|ℜ|}, where Ri ={ ri1, ri2,…, r|Ri| },
1 ≤ i ≤ |ℜ|. Each set of rules is called a intrinsic rule set, referred to as a classifier. It 
plays an independent role in classifying unseen instances. The relation between two 
sets of intrinsic rules is in disjunctive normal form (DNF) as are the rules within Ri.
To examine the effectiveness of using multiple classifiers to classify unseen cases, our 
approach does not involve any rule optimzation between multiple sets of rules. More 
details about these algorithms can be found in [6].   

A general DNF model does not require mutual exclusivity of rules within a set of 
intrinsic rules and/or between different sets of intrinsic rules. The DNF used in this 
context differs from the conventional way in which only one of the rules is satisfied 
with a new instance. Instead, all the rules will be evaluated on a new instance. Rules 
for either the same classes or different classes can potentially be satisfied 
simultaneously. In the case of different classes, conflicting conclusions occur. One 
solution for this is to rank rules for each class according to a class priority as 
established in some way, such as information gain, where the latest class is taken as 
the final class [7, 8]. The other solution is based on the majority voting principle, in 
which the conflicting conclusions are resolved by identifying the most satisfied rules 
[9]. In contrast, our approach makes use of as much rule-based evidence as possible to 
cope with conflicting conclusions through Dempster’s rule of combination. 

3   Demspter Shafer Theory of Evidence  

The Demsper-Shafer (D-S) theory of evidence allows us to combine pieces of 
evidence from subsets of the frame of discernment that consists of a number of 
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exhaustive and mutually exclusive propositions hi, i = 1, .., n.  These propositions 
form a universal set Θ. For any subset Hi = {hi1, …, hik} ⊆ Θ, hir (0< r ≤ k) represents a 
proposition, called a focal element. When Hi is a one element subset, i.e. Hi ={hi}, it is 
called a singleton. All the subsets of Θ constitute powerset 2Θ, i.e. H ⊆ Θ, if and only 
if H ∈ 2Θ. The D-S theory uses a numeric value in the range [0, 1] to represent the 
strength of some evidence supporting a subset H ⊆ Θ based on a given piece of 
evidence, denoted by m(H), called the mass function, and uses a sum of the strengths 
for all subsets of H to indicate the strength of  belief about proposition H on the basis 
of the same evidence, denoted by bel(H), often called the belief function. Notice that 
bel(H) is equal to m(H) if the subset H is a singleton [10].  

4.1   Derive Mass Functions 

In the previous section, we have given a general form of a text classifier, R. As stated 
in Section 2, given multiple reducts obtained from a collection of documents, the 
multiple corresponding sets of intrinsic rules will be generated, denoted by ℜ = {R1,
R2,…, R|ℜ|}, where Ri ={ ri1, ri2,…, r|Ri|} and 1 ≤ i ≤ |ℜ|. We now examine how to connect 
each classifier to a piece of evidence in order to formulate a mass function. 

Let Θ = {c1, c2, …, c|Θ|} be a frame of discernment, and let Ri ={ ri1, ri2,…, ri|Ri|}be a 
set of intrinsic rules as above. Given a test document d, if k rules are activated, i.e. 
rij+1, rij+2, …, rij+q where 1 ≤ j, q ≤ |Ri|, then q decisions are inferred from Ri. Formally, 
this inference process can be expressed by rij+1(d) → h1|stgj+1, rij+2(d) → h2|stgj+2, …, 
rij+q(e) → hq|stgj+q, where hs ∈ 2Θ

, s ≤ q, and stgj+s are rule strengths expressing the extent 
to which documents belong to the respective categories in terms of degrees of 
confidence. At the end of the inference process, a set of decisions will be obtained, 
and denoted by H′ = {h1, …, hq}, where H′ ⊆ 2Θ.

With respect of the number of the rules fired, there are two situations, i.e. either  
q = |Ri| or q < |Ri|.  When q = |Ri|, his means all the rules in Ri are completely satisfied 
with a given document. We exclude this case since it may not play any role in 
classifying any documents. When q < |Ri|, stgj+1 + stgj+2 + …+ stgj+q < 1, so H′ does not 
constitute a frame of discernment. Therefore Demspter’s rule of combination can be 
not applied. To use Demspter’s rule of combination appropriately to pool all the 
conclusions to draw a final decision, we need a way to normalize the outcomes 
obtained. For convenience later, we define a function ϖ such that ϖ(hj) = stgi+j.

The normalization process starts by finding the duplicate conclusions within H′,
and then the corresponding rule strengths are added up, resulting in a new set of the 
decisions. Formally, for any two hj, hi+s ∈ H′, if hj = hs, j ≠ s, then ϖ(hj) ← ϖ(hj) + 
ϖ(hs) and hs is eliminated. After this processing, a set of decisions is reconstructed, 
denoted by H = {h1, h2, …, h|H|}, where H ⊆ 2Θ. The definition of a mass function for 
H is as follows: 

Definition 5. A mass function is defined as m: H → [0,1]. There are four different 
situations based on the inclusive relations between Θ and H.
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1) if Θ ∈ H, then we define a mass function as follows:  
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2) if Θ ∉ H, and |H| < 2, then H ← H ∪ Θ and we define a mass function as 
follows: 
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3) if H = Θ, and ϖ(hi) ≠ 0 for any element hi ∈ H (1≤ i ≤|H|) then we define:  

)(})({ ii hhm ϖ= (1≤ i ≤|H|) (4)

4) if H = Θ, and ϖ(hi) = 0 for any element hi ∈ H (1≤ i ≤|H|) then we define:  
m(H) =1.

We have elsewhere provided a proof that the rule strength satisfies the condition 
of a mass function [6]. However, as in the first case above, some conclusions cannot 
be inferred from a specific piece of evidence, so these conclusions remains 
unspecified. Thus it is necessary to redistribute mass among known conclusions. We 
believe such a redistribution for the unknown state of hypotheses could be valuable in 
the coherent modeling and basic assignment of probabilities to potential hypotheses 
and for making decisions over an incomplete frame of discernment. 

The second case means that the added Θ represents our ignorance about the 
unknown state of hypotheses in inference processes. It absorbs the unassigned portion 
of the belief after the commitment to H. The addition of ignorance about the 
likelihood of future hypotheses provides us with all the information we need for the 
inference process. This also means that the system does not require complete 
knowledge about all potential hypotheses since we represent an implicit set of 
unmodeled future hypotheses by including an additional Θ.

For the third case, the conclusions obtained are exactly the same as these integral 
hypotheses within Θ, through we directly replace strengths with a mass function. 

The fourth case means that the conclusion obtained does not have knowledge 
about any individual hypotheses within the frame of discernment Θ, and its 
complement is an empty element. In this situation, we reassign its degree of total 
belief as 1.0.  

4.2   Decision Fusion 

Having defined the mass function, now we examine the problem of combining 
multiple classifiers. Suppose we are given multiple classifiers ℜ = {R1, R2,…, R|ℜ|}
and a set of categories Θ = {c1, c2, …, c|Θ|}, for a new document d, the category 
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predictions of multiple classifiers R1, R2, …, R|ℜ| will be applied to the document, 
resulting in Ri(d) = Hi. If only one of the classifiers is activated, such as R1(d) = H1,
then H1will be ranked in decreasing order.  If the top choice of H1 is a singleton, it will 
be assigned to the new document, otherwise lower ranked decisions will be 
considered for further selection. When K classifiers are activated, the multiple sets of 
classification decisions H1, H2, …, HK are obtained, where Hi = {hi1, hi2, …, h| iH |}, Hi ⊆
2C, and the corresponding rule strengths are ϖ(Hi) = {ϖi(hi1), ϖi(hi2), …, ϖi(h| iH |)}.
After normalizing ϖ(Hi) by using the method introduced in Section 4.1, we can obtain 
K mass functions, denoted m1, m2, …, mK. With all of these outcomes along with the 
mass functions, we can gradually combine them to decide the final decisions using 
Equation (4) as follows: 

]...][...[ 21 Kmmm ⊕⊕⊕ (5)

The combined results will be ranked and the final decision will be 
 made by Equation (6). Notice that we are interested in the case where hij is a 
singleton, i.e. a single category, given Hi, so we have m(hij) = bel(hij) as stated in 
Section 3. 

D(x) = H  if bel(H) = maxH∈C bel(H) (6)

5   Experiment and Evaluation 

There are a number of methods for evaluating the performance of learning algorithms. 
Among these methods, one widely used in information retrieval and text 
categorization is a pair of measures called precision and recall, and denoted by p and r
respectively. Precision is the ratio of the true category documents to the total 
predicted category documents. Recall is the ratio of the predicated category 
documents to the true category documents.  To compute overall performance on all 
the categories, we use the other measure the micro-averaged F1 which is defined on 
the basis of the concepts of precision and recall as follows: 

micro-averged
m

cF

F

m

i
i∑

== 1
1

1

)(
(7)

where

rp

pr
cF i +

=
2

)(1 (8)

The F1 measure, initially introduced in [11], it combines Precision and Recall as a 
harmonic mean of the two measures. This measure will be used as an evaluation 
criterion in this experiment.  
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5.1   Newsgroup Data  

For our experiments, we have chosen a benchmark dataset, often referred to as 20-
newsgroup. It consists of 20 categories, and each category has 1,000 documents 
(Usenet articles), so the dataset contains 20,000 documents in total. Except for a small 
fraction of the articles (4%), each article belongs to exactly one category  [12]. 

In this work, we have used 10 categories of documents, 10,000 documents in total, 
to reduce the computational requirements. The documents within each category are 
further randomly split into two groups, one consisting of 800 documents for training, 
and the other including 200 documents, but only 100 of the 200 documents are 
selected for testing.  

5.2   The Experiment Results  

For our experiments, we use information gain to select about 270 keywords after 
removing stopwords and applying stemming. By using the algorithms described in 
Section 2, ten reducts have been generated, and ten corresponding sets of intrinsic 
rules in turn have been constructed, denoted by R0, R1, …, R9. In the following, we 
will not distinguish between the concepts of rules and reducts if no confusion occurs.   

Prior to the experiments for evaluating the effectiveness of different combinations 
of reducts, we first carried out the experiments on individual reducts. Figure 1 
presents the performance of each set of intrinsic rules. It can be seen that the best 
performing reduct is R4.

To examine of the effectiveness of combined reducts in classification, we rank 
these reducts in decreasing order based on their classification accuracy, and then 
divide the 10 reducts into two groups to see the effect of the combinations of the 
reducts with high and low predictive accuracy, respectively. The first group consists 
of R1, R2, R3, R4, R6, and R7, and the second group includes R0, R5, R8, and R9. For the first 
group of reducts, we first take R4 with the best performance, and then combine it with 
R1, R2, R3, R6, R7. The combined results are denoted by R41, R42, R43, R46, R47 and they will 
be ranked. The best performing combination R46 is chosen, and in turn is combined 
with R1, R2, R3, R7, resulting in ranked combinations of R461, R462, R463, R467. As illustrated 
in Figure 2, in comparison with R46, their classification accuracy performance has 
dropped. To examine the change in performance with the addition of more reducts, 
R461 and R463 are taken for further combinations, it is surprising that the performance 
increases. However, the performance degrades again with more reducts being 
combined. Therefore, it can be concluded that the combination of the best individual 
reduct with a reduct having a fairly modest performance is the best combination in 
achieving the highest predictive performance, and the performance of the best 
combination is 3.24% better than the best individual in the first group. 

For the second group of reducts, we use the same method as the first group  
to examine behaviour of the combined reducts. We first take R9 to combine with R0,
R5, R8. The performance of the combined reducts is shown in Figure 3. Following  
the  same principle as above, we combine R59 with R0, R8, and combine R58 with R0. As  
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Fig. 1. The performance of different sets of intrinsic rules 

Fig. 2. The performance of the combined reducts from the first group 

can be seen, the performance of these  combinations drops by about 2% on average 
relative to R59 and R58.  However, when four reducts are combined, the performance 
increases again. A similar pattern to the first group of reducts is observed for this 
group. To analyze the effect of adding more reducts, we take the best performing R4

and worst performing R2 from the first group to combine with R5890. The performance 
of this combination is not better than the previous one, this is a similar outcome to the 
first group of reducts.  

To investigate how the performance improvement has been achieved when 
multiple  reductes  are  combined, we base the outcome of the first group of reducts to  
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Fig. 3. The performance of the combined reducts from the second group 

examine the performance variation on each category. Figure 4 presents a comparison 
between the performance of individual reducts and their combinations on each 
document category. It can be observed that with the exception of category 3, the 
predictive performance of the combinations is better that of individuals on all the 
document categories.  However, it can also be conjectured that the performance of the 
combination of two reducts may be not better than that of two individuals, if there is a 
big margin between their performance on that category, e.g. category 3.  

Fig. 4. The performance of reducts R4 and R6 vz the combined reducts 46 

In Figure 5, we put the four combined reducts R46, R463, R4637 and R46371 on one graph 
to see the effect of the different combinations. The performance of the best com 
bination is  mainly determined by the performance on categories C2, C3, C5, and C6. 
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Fig. 5. The performance of the different combinations of reducts 

Although R4637 performs better than R463 and R14637, still worse than R46, and its trend 
seems not provide an indication that it could be competitive to R46 on each category.  

6   Conclusion 

In this work, we have presented a boosting-like method for generating multiple sets of 
rules which is built on Rough Set theory, and a novel combination function for 
combining classification decisions derived from multiple sets of rule classifiers based 
on Dempster’s combination rule. Preliminary experiments have been carried out on 
10 of 20-newsgroups benchmark data, individually and in combination. We found that 
the combination which can achieve the highest predictive performance is a 
combination of two reduts of which one is the best, and the other should have 
reasonable predictive performance. The finding of which combining more ‘weak 
learners’ outperforms any individuals is consistent with the results obtained by 
Quinlan, and Freund and Schapire [13, 14].  

To our knowledge, this work is the first attempt to use Dempster’s rule of 
combination as a combining function for integrating multiple sets of decision rules in 
boosting-like methods and for text categorization. The experimental results have 
shown the promise of our approach. To consolidate this work, more comprehensive 
comparisons with the other combining functions of weighted linear and majority 
voting methods, and with previous results published in the literature will be carried. 
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